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ABSTRACT Shunt Active Power Filter (SAPF) is widely used for harmonics and reactive power
compensation. However, in addition to the harmonics, harmonic resonance also exists in the network, which
is prominent in configurations where both SAPF and capacitor bank are present in the distribution network.
Resonance is mainly caused due to interaction between line impedances, capacitor banks and modern
electronic equipment with capacitive behaviour. Harmonic resonance leads to an increase in harmonic
level around the resonance frequency, which further increases the overall THD of the distribution system.
As there can be multiple resonance scenarios which may also vary depending on internal switching of
capacitor devices, it is difficult for conventional SAPF to address both harmonic resonance and current
harmonics. Therefore, to improve the overall power quality, it is important to first identify/detect and then
selectively damp the detected harmonic resonance in the distribution network. Detection of resonance with
SAPF commonly require external signal injection, additional circuitry and sensors. This paper deals with
non-invasive machine learning (ML)-based resonance detection, which only requires voltage harmonics at
the point of common coupling (PCC) as input. Hence, it eliminates the need for any modification in existing
control strategy, external signal injection and additional sensors. Also, Resonance detection, resonance
damping and harmonic compensation is achieved by utilising only two types of sensors i.e., voltage at PCC
and load current.

INDEX TERMS Active power filters, harmonics, classification learning, power quality.

I. INTRODUCTION
Harmonic resonance is a power quality issue in power dis-
tribution networks that arises primarily due to interaction of
line impedances, capacitor banks and modern power elec-
tronic loads [1], [2]. The main reason behind the increasing
resonance issue is the capacitive behaviour of new energy-
efficient household electronic equipment and the capacitor
banks [3]. However, presence of resonance is more predom-
inant in the case where Shunt Active Power Filter (SAPF)
is installed in the system with the capacitor bank. SAPF
is one of the most sought-after solution for power quality
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issues along with other configurations of Active Power Fil-
ter (APF)[4]. Capacitor banks are used as a Power Factor
Correction (PFC) unit whereas SAPF is widely utilized to
address both harmonic as well as reactive power issues.
Harmonic resonances cause a significant rise in the har-
monic levels of voltage and currents around the resonance
frequency [5], [6]. Even if the capacitor bank is detuned,
resonance can still be present in the distribution system owing
to the capacitive nature of the load. Also, detuning is almost
impossible in case of distributed capacitance throughout the
distribution network. Therefore, to improve the overall power
quality, it is important to classify, detect, and address differ-
ent harmonic resonance scenarios in the power distribution
network.
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TABLE 1. Comparative analysis of various techniques related to SAPF addressing harmonic resonance.

There are numerous control strategies and optimization
techniques for SAPF are available in literature to address
different issues [7]–[10], however, very few control strategies
focus on addressing harmonic resonance, especially detec-
tion of harmonic resonance. A hybrid filter with a capacitor
bank in series by coupling transformer is utilized to suppress

harmonic resonance in [11], providing a cost-effective solu-
tion. Another hybrid APF based on the impedance approach
is proposed in [12]–[14]. A conventional control strategy for
SAPF is proposed in literature which deals with resonance
damping for a particular resonance frequency [15], [16].
Similarly, the concept of Resistive APF is utilized in [17] both
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for resonance damping at a particular frequency and selective
harmonic compensation. The possibility of unwanted ampli-
fication of the harmonics caused due to mismatch between
Resistive-APF conductance and line impedance is discussed
and addressed with the resonant control technique [18].
Resonance damping technique based on current source detec-
tion is proposed in [19]. However, this control technique is
limited to a narrow frequency range. While most of the tech-
niques discussed in literature focused on resonance damping,
there is not much discussion regarding identification or detec-
tion of the resonance except in [20], [21]. Authors in [21]
have mainly focused on the resonance in the upstream distri-
bution network caused due to interaction between capacitor
bank and source impedance. This method utilizes invasive
technique of injecting external signal into the circuit to cal-
culate power index. The disadvantage of invasive techniques
is that they can compromise the distribution network per-
formance. Also, this method requires information from four
types of sensors to detect resonance frequency. Therefore,
most solutions available in literature either utilise passive
hybrid SAPF configuration or required additional sensors
and/or hardware to address harmonic resonance. The draw-
back of utilising passive filters and SAPF to address harmonic
resonance is that they can only address resonance in the
specific frequency range and does not consider variation in
system parameters.

A detailed comparison between different techniques
discussed above is summarised in Table 1.

Due to continuous variation in the internal switching of
capacitive equipment, there can be various possibilities in
the resonance’s scenarios, e.g., the level of amplification,
resonance frequency and the bandwidth of the resonance.
Thus, it is important to study various resonance scenarios.

Presence of resonance in the circuit usually does not create
a problem as long as it is not excited. There are two types
of resonance, parallel and series; both are dangerous to the
power distribution network. Parallel resonance is excited by
a harmonic current close to the resonance frequency, where
impedance of the resonance circuit is minimum. Series res-
onance is excited by a harmonic voltage close to the reso-
nance frequency, where impedance of the resonance circuit is
minimum. Thus, presence of harmonic resonance is observed
by measuring the impedance at the busbar or PCC in the
distribution network [22]. Machine learning (ML) approach
has been proposed in this paper to detect various resonance
scenarios.ML has been used reliably to detect several defects,
irregularities and disruptions in power grids and other issues
with power quality in general [23]–[26]. Harmonic levels
are amplified around resonance frequency due to presence
of resonance. As a result, harmonic levels are different in
presence of resonance in comparison to the case when there
is no resonance. This distinction makes it a suitable problem
for supervised classification ML approach. ML algorithms
works by creating trained model with the help of labelled
training datasets and these models are utilized in making
data-driven predictions for unseen test dataset. In this paper,

ML model is based on classification learning algorithms,
i.e., KNN (K-Nearest neighbours) and SVM (Support Vector
Machines). A classifier algorithmworks by dividing data into
different ‘‘classes.’’ KNN works on the principle that similar
things exist in close proximity i.e., data points that are near
to each other belongs to same class [27]. KNN algorithm
searches for K number of nearest neighbours for given data
sample and predicts class on the basis of majority labelled
data sets among K nearest neighbours. In SVM, each data
point is plotted in an n-dimensional space and it tries to find
a hyperplane that separates the two classes [28]. The objective
here is to find a plane that has the maximummargin (distance
between the support vectors). Support Vectors are the points
that are closer to the hyperplane and influence the position
and orientation of the hyperplane. More details regarding
theoretical foundation of SVM and KNN is provided in
[27], [28]. This technique only requires voltage harmonics
at the PCC as an input. Impedance data from the MATLAB
is only required at the training stage to label dataset with
corresponding resonance frequency.

Typical behaviour of the power distribution network is
presented by an equivalent circuit and the loadwith capacitive
behaviour is modelled with the help of an aggregated load.
All parameters are designed on the basis of actual distribution
network parameters in a way, that it has distinct resonances
well below 2.5 kHz [29].

Paper is presented as follows: Section II deals with the
discussion about the effect of resonance on the performance
of SAPF and the methodology for the machine learning algo-
rithm. Section III deals with the details regarding building of
the realistic database with the help of an equivalent circuit and
learning algorithms. Section IV presents control strategy for
SAPF. Section V presents machine learning and SAPF results
and section VI concludes the work. The main contribution
of the paper includes: - (i) Analyse the effect of resonance
on the performance of SAPF, (ii) Development of realistic
database considering various system parameter variations to
study resonance behaviour in power distribution network
in the presence of SAPF., (iii) The formulation of a reso-
nance detection method based on machine learning approach.
(iv) Resonance detection, damping in addition to the har-
monic compensation by utilising reduced number of sensors.

II. SYSTEM CONFIGURATION
Fig. 1 shows the system configuration of a simplified dis-
tribution system with SAPF and a PFC unit. Fig. 1 shows
a three-phase three-wire system with source voltages,
usx(x = a, b, c) with line impedance of resistance Rs and
inductance Ls, connected to a non-linear and linear load in
parallel. Non-linear consists of an uncontrolled rectifier with
an R-L load at its output terminal. The linear load consists of
R-L-C parameters connected in parallel at PCC. SAPF unit
contains a Voltage Source Converter (VSC) with six IGBTs
and a capacitor (Cdc) at DC side. A coupling inductor (L f )
connects SAPF in parallel to the source and load. As shown
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FIGURE 1. Block diagram of the distribution system with SAPF to study
different resonance scenarios.

in Fig. 1, a capacitor bank with capacitance Cr is connected
in parallel to the source and load.

A. PARALLEL RESONANCE
Capacitor banks (see Fig. 1) are often used as a PFC unit in the
distribution load and are placed near PCC. If seen from PCC
towards the source, capacitor bank forms a parallel resonant
circuit with the line inductance. This upstream impedance is
expressed as;

ZSr = (Zs||ZCr ) (1)

ZSr = (Rs + sLs) ||
(
1
/
sCr

)
(2)

On solving,

ZSr =
Rs + sLs

1+ sCrRs + s2LsCr
(3)

Assuming the effect of Rs is relatively small, Eqn. (3) is
simplified as:

ZSr ≈
j2π fLs

1+ (2π f )2 LsCr
s = j2π f (4)

Now, resonance frequency from (4) is expressed as;

Fr ≈
1

2π
√
LsCr

(5)

Fig. 2 shows variation in the resonance frequency (F r )
with respect to variation in both line inductance Ls and
parallel capacitance Cr . Resonance frequency varies from
80 Hz toaround 1 kHz on varying Ls and Cr from the point
(5000 µF, 5000 µH) to the point (100 µF, 100 µH).

B. PERFORMANCE OF SAPF UNDER
RESONANCE SCENARIO
SAPF works by injecting compensating current iFx
(x = a, b, c), at PCC to cancel out the harmonics present
in source current iSx . Harmonics are injected into the source
by load current iLx produced by the non-linear load. Power
flow between the source and load is controlled by maintain-
ing a constant DC voltage (UDC ) across the DC capacitor
(Cdc) as shown in Fig.1. In this paper reference current for

FIGURE 2. Parallel resonance caused due to interaction between
capacitance of capacitor bank, (Cr ) and line inductance (Ls).

FIGURE 3. Performance of SAPF under different scenarios (a) Case 1:
Without resonance, (b) Case 2: resonance at around 1.55 kHz.

source current is generated with the help of Adaptive linear
network (ADALINE) based control strategy utilising Least
Mean Square (LMS) algorithm [30].

Performance of SAPF is observed for the circuit configu-
ration shown in Fig.1 under three scenarios:

1) Case 1: Without resonance
2) Case 2: In presence of resonance of resonance at around

1550 hertz
3) Case 3; In presence of resonance at around 500 Hz

Results are presented in Fig. 3 and 4. Fig. 3 shows the
performance of SAPF in the presence of resonance in terms
of PCC voltages and source current for case 1 and 2. It can be
observed from Fig. 3(a) and (b) that when SAPF is connected
at t = 0.05 sec, compensating current (iF ) is injected into
the circuit and source current (is) transforms into a sinusoidal
waveform in phase with the PCC voltage (upcc), without any
significant delay. Presence of resonance in case 2 can be
observed from Fig. 3(b), which also appears in the harmonic
spectra as shown in Fig. 4. Fig. 4 shows harmonic spectra
of PCC voltage and the source current under three resonance
conditions as explained above in case 1, 2 and 3. For case 1,
there is no resonance hence THD of both PCC voltages and
source current improved from 8.5 % to 3.0 % and 21.2 %
to 1.97 % THD respectively as shown in Fig. 4. For case 2,
there is resonance around 1550 Hz (31 harmonic order)
frequency.
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FIGURE 4. Harmonic spectra of (a) PCC voltage, |uh
pcc | and (b) Source

current |ih
S |, before and after SAPF connection under three different

resonance scenarios.

THD improved from 14.6 % to 9.6 % for PCC voltage
and from 24.06 % to 7.54 % for source current. It can be
clearly observed that there is harmonic amplification around
resonance frequency in comparison to case 1. For case 3,
THD improves from 14.3 % to 11.2 % for PCC voltage and
37% to 23.6%THD for source current. This increase in THD
is due to amplification in harmonics around the resonance
frequency i.e., 500 Hz as can be clearly observed in harmonic
spectra shown in Fig. 4. In both case 2 and case 3, magnitude
of harmonics around resonance frequency does not reduce
much even after connection of SAPF, because SAPF is only
compensating harmonics injected by load with the help of
compensating current. Therefore, it can be concluded that
presence of resonance significantly affects overall THD of
both voltages and current at PCC and hence performance of
SAPF.

C. METHODOLOGY FOR CLASSIFICATION LEARNING
BASED DETECTION
Different features of resonance, i.e., bandwidth, amplification
(|Zpcc|

/
|Z ref |) and resonance frequency are shown in Fig.5

and corresponding amplification in the harmonic spectrum of
PCC voltage |uhpcc| and current |ihs | is shown in Fig.4. Refer-
ence impedance (Z ref ) is the impedance value at the 50 Hz
frequency, expressed in an extrapolated form. This distinct
amplification in harmonic levels around resonance frequency
compared to the case without resonance (case 1: without
resonance, Fig. 4) forms the basis for the machine learning
based resonance classification and detection. Since, in par-
allel resonance, amplification in voltage harmonic levels is
more significant in comparison to the current, thus only volt-
age harmonic information is utilised here to detect resonance.
Fig. 6 shows a methodology for classification learning based
detection. Here, voltage |uhpcc| spectra is required as an input

being trained for respective resonance conditions with the
help of learning algorithm. Simulation data, i.e., impedance
at PCC, Zpcc is required for labelling training data set. After
training is finished with desired accuracy, unseen test data
set, i.e., voltage |uhpcc| harmonic spectra are subjected to the
trained model for predicted result i.e., resonance frequency.
Resonance is classified in terms of the frequency ranges.
Thus, the bandwidth of 250 Hz is selected considering the
effect in the harmonic amplification, i.e., case with resonance
at 1.6 kHz frequency is labelled as ‘‘1500-1750 Hz ‘‘.

FIGURE 5. Resonance characteristics under three resonance cases:
Impedance at PCC (

∣∣Zpcc
∣∣), Reference Impedance (Zref ) and bandwidth.

FIGURE 6. Block diagram showing the process of machine learning based
resonance detection.

III. PROPOSED RESONANCE DETECTION TECHNIQUE
Three main stages for machine learning includes (a) Data
generation and collection, (b) Data pre-processing, (c) Imple-
mentation of Algorithm. Fig. 1 is presented in the form of
a simplified single line diagram as shown in Fig.7 (a). The
network consists of mains, PCC and an R-L branch, SAPF is
connected at the load end in parallel to the load and source
along with a PFC unit, i.e., capacitor bank, a linear load
as well as a non-linear load and harmonic current sources.
Harmonic current sources consist of the harmonics injected
by current source type non-linear loads. Variation in almost
every parameter shown in Fig. 7 (a) is performed to build a
database such that it includes all possible cases of different
resonance frequencies required for training. Database build-
ing, identification and functioning of the training algorithm
is discussed in the following section:
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FIGURE 7. Equivalent circuit.

A. BUILDING DATABASE FOR THE LEARNING ALGORITHM
Upstream network in Fig.7 (b) consists of line impedance
in parallel with shunt capacitance. The downstream network
(Fig. 7(c)) consists of the load and the current harmonic
emissions (iLh). Impedance Zpcc represents the combined
impedance of both upstream as well as downstream network.
Impedance measurement at PCC ensures all parameters vari-
ations at a common point. Zpcc is calculated in parts with the
help of admittance Ypcc as follows:

Ypcc = YL + YCr + Ys (6)

where Ypcc = 1/
Zpcc

Ypcc = YLoop + YCr (7)

where YLoop = YL + Ys represents loop admittance, YL
represents load admittance of the linear load as shown in
Fig.7(c), YCr represents admittance of capacitor bank and Ys
represents line admittance.

YL =
1

R1 + jXL1
+

1
R2 − jXC1

(8)

On simplification,

YL =
c+ jd
a+ jb

(9)

where, c = R1 + R2, d = XL1 − XC1, a = R1R2 + XL1XC1
and b=(R2XL1 − R1XC1)
Now, loop admittance YLoop is calculated as;

YLoop = YL + Ys (10)

YLoop =
c+ jd
a+ jb

+
1

Rs + jXLs
(11)

YLoop =
a+ cRs − dXLs + j(b+ cXLs + dRs)

aRs − bXLs + j(bRs + aXLs)
(12)

Zpcc =
1

ZLoop
+

1
ZCr

(13)

where, ZCr = −(1
/
XCr ) and ZLoop=(1

/
YLoop), on substitut-

ing values of ZCr and ZLoop in (17).

Zpcc =
p+ iq
r + js

(14)

FIGURE 8. Dataset consisting of voltage and current harmonic spectra for
specific resonance case scenario of 1.55 kHz.

where,

p = XCr
[
(R1R2 + XL1XC1)Rs − (R2XL1 − R1XC1)XLs

]
q =XCr

[
(R2XL1−R1XC1)RsXCr+(R1R2+XL1XC1)XLsXCr

]
r = (R1R2 + XL1XC1)(XCr − XLs)− (R2XL1 − R1XC1)Rs
+ (R1 + R2)RsXCr − (XL1 − XC1)XLsXCr

s = (R2XL1 − R1XC1)(XCr − XLs)+ (R1R2 + XL1XC1)Rs
+ [(R1 + R2)XLs + (XL1 − XC1)Rs]XCr

Total impedance calculated at PCC is utilised to observe
different resonance scenarios on varying load and source
parameters. The main reason behind resonance is the capac-
itive behaviour of the load. Therefore, effect of the induc-
tive non-linear load is taken as harmonic current emissions
as shown in Fig. 8, and instead of R-L parameters, R-L-C
aggregated load is considered to represent load impedance
for observing resonance behaviour with the help of total
impedance Zpcc as shown in Fig.8(c). Now, considering
non-linear R-L parameters, total load admittance YLeq is
calculated as:

YLeq = YL + YRL + YLL (15)

YLeq =
c+ jd
a+ jb

+
1
RL
+

1
jXLL

(16)

Applying KCL at PCC in Fig. 8(a): Voltage at PCC is
expressed as:

upcc =
uapf ZsZCrZLeq + usZf ZCrZLeq − ILhZf ZsZLeqZCr

ZsZCr
(
ZLeq + Zf

)
+ Zf ZLeq

(
ZCr + Zs

)
(17)

Therefore, harmonic spectrum components voltage at PCC
in magnitude form is calculated for various conditions in
order to form database. Since, database consists of various
datasets, each consisting harmonic spectrum of voltage at
PCC. Fig.8 (a) shows magnitude of harmonic spectrum for
two different resonance scenarios i.e., for 500 and 1550 Hz
considering one household and base parameter values as
shown in Table 2. Since there are many other possible res-
onance scenarios possible with different amplification factor,

VOLUME 10, 2022 59947



S. Sharma et al.: Reduced Sensor-Based Harmonic Resonance Detection and its Compensation

TABLE 2. Base values.

FIGURE 9. Variation in resonance frequency for different capacitance Cr
values considering all other circuit parameters constant.

thus final dataset is obtained by considering square of values
shown in Fig 8(b). Fig. 8(b) shows datasets for different res-
onance scenarios each with different resonance frequency as
well as magnitude. On comparing harmonic spectrum shown
in Fig. 8(a) and 8(b), datasets component in Fig. 8(b) aremore
distinctive with respect to the harmonic component around
resonance frequency.

Effect of parameter variation is observed and discussed
below by keeping other parameter values fixed, as shown
in Table 2.

1) VARIATION IN PARALLEL CAPACITANCE, Cr

Fig. 9 shows variation in total impedance at PCC calcu-
lated for different values of parallel capacitance, Cr . Reso-
nance frequency decreases from 1.6 kHz to 0.1 kHz with the
decrease in the amplification factor on increasing capacitance
value from 10 µF to 3000 µF. The corresponding change in
phase of the harmonic impedance show transition from the
inductive to the capacitive behaviour

2) VARIATION IN LINE INDUCTANCE, LS
Variation in total impedance Zpcc for different values of line
inductance Ls is shown in Fig. 10. Resonance frequency
decreases from 1.75 kHz to 0.9 kHz with decreases in ampli-
fication factor on increasing line inductance Ls from 800 µH
to 3000 µH.

3) VARIATION IN LOAD IMPEDANCE
Fig. 11 shows the variation in the parameters of the aggre-
gated load indirectly by varying number of households. Based
on various resonance cases, as shown above, ranges of all
parameters are selected for training data formation, shown

FIGURE 10. Variation in resonance frequency for different values of line
impedances Ls considering all other circuit parameters constant.

FIGURE 11. Impedance obtained after variation in the number of
households (nh) from 30 to 250.

TABLE 3. Parameter values.

in Table 3. Total load impedance is varied by varying the
number of households, values shown in Fig.9 and 10 are
for one household load. For clarity, variation in number of
households is shown for one particular value of Shunt capac-
itance, Cr = 200µF , with other parameters values fixed
as shown in Table 2. Resonance frequency increases from
500 Hz to 1.8 kHz with the decrease in amplification factor
on increasing number of households from 30 to 250 as shown
in Fig.11. Corresponding variation in phase is also shown
in Fig. 11.
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FIGURE 12. Source voltage distortion for different harmonic orders.

4) SOURCE VOLTAGE DISTORTIONS
Variation in source voltage (us) distortion is done by varying
magnitude and angle within a range as shown in Fig. 12.
Total 12 variations for 3rd, 5th, 7th and 11th harmonics are
considered to build the database as shown in Fig. 12.

5) CURRENT EMISSIONS
Current harmonics are injected from the non-linear load.
Therefore, variation in current harmonics is mostly governed
by variation in the load parameters.

B. ITERATIVE INCREASE IN THE DATABASE POPULATION
To create a realistic database, datasets are identified, selected
and artificially increased. The process for determining
database for training and testing is explained below.

Based on total and reference impedance obtained after
variation of all parameters as discussed earlier. Cases with
amplification factor (|Zpcc|

/
|Z ref |) smaller than 1 are con-

sidered as cases without resonance and cases with amplifi-
cation factor greater than 10 are not considered in database.
Cases with resonance frequency outside the range 0-2.5 kHz
are considered as cases without resonance labelled as
‘‘No Resonance.’’

Fig. 13 shows the process for iteratively increasing the
database on the basis of variations in the equivalent circuit
parameters. Based on the variations in different parameters
such as voltage distortion, line impedance, PFC capacitance,
number of households, and load parameters, different reso-
nance scenarios are generated. All cases generated by individ-
ual parameters variations are discussed and presented earlier
in this section.

1) DATABASE DETAILS GENERATED FOR
TRAINING AND TESTING
The database is generated in an iterative manner i.e., increas-
ing the size, taking into account one parameter at a time as
shown in Fig. 13. Details regarding total number of cases for

TABLE 4. Training and testing database.

FIGURE 13. Iterative increase in the database.

each parameter is presented in Table 4 and Fig.13. Among ten
variations in load parameters, half values are considered for
testing and the remaining half are considered for testing to
separate database.

C. CLASSIFICATION LEARNING ALGORITHMS
Simulations are carried out to build a database consisting
of all possibilities associated with different characteristics
of harmonic resonance such as resonance frequency, ampli-
fication factor and bandwidth. Classification learning app
toolbox available in the MATLAB is utilized to perform
various operations associated with training, and the database
is tested for multiple algorithms. Algorithm corresponding to
the trained model with the highest accuracy is selected for
resonance detection.

Among various learning techniques available in the litera-
ture, KNN and SVM techniques are observed to provide the
best performance in terms of accuracy. The working of both
algorithms is shown in Fig. 14. Initial three steps are the same
for both SVM and KNN, as shown in Fig.14.

Data pre-processing is required to extract only the mag-
nitude of the voltage harmonics samples in per unit. Fea-
ture extraction involves only selecting the particular range
of harmonics for the training purpose, only harmonics
from 0 to 2.5 kHz are considered. Normalization of the
input samples ensures that both components with a large and
small range have equal weightage in the training process.
Further distinct steps for both algorithms are explained as
follows:

VOLUME 10, 2022 59949



S. Sharma et al.: Reduced Sensor-Based Harmonic Resonance Detection and its Compensation

FIGURE 14. Working of both SVM and KNN algorithm.

1) KNN-K NEAREST NEIGHBOURS
KNN works by calculating the distance between training and
test data [27], [31]. Nearest neighbours are selected with
the help of the closest distance. K in KNN stands for the
number of nearest neighbours considered to predict the class
of the unseen test data. The value of K and the distance
metric settings are decided such that optimum performance
is achieved. Here, the number of input samples (i.e., labelled
data samples), n is large; therefore, K is decided with the
help of cross-validation (CV). In CV, input data samples are
arbitrarily divided into train and test data continuously till
each data sample is used as test data. Accuracy of the model
is checked against CV-data for random K values. The model
for which the best accuracy is obtained is considered as the
best K value. Here, maximum accuracy for CV datasets is
observed at K = 15. For distance metric all distance metrics
are evaluated to achieve best accuracy. Table 5 shows accu-
racy corresponding to different distance metric in KNN, both
Euclidean and Cosine methods have similar performance.

If xi(i = 1, 2, 3 . . . , n) and xt (t = 1, 2, 3 . . . , n) represents
train and test data respectively with p number of features,
then distance metric (d) between test and training data is
defined as:

d (xi, xt)

=

√
(xi1 − xt1)2 + (xi2 − xt2)2 + . . . (xip − xtp)2

xi ∈ xi1, xi2, xi3, . . . . . . . . . xip (18)

where xi1 =
∣∣∣u3hpcc∣∣∣, xi2 = ∣∣∣u5hpcc∣∣∣,. . . . . .xi24 = ∣∣∣u49hpcc

∣∣∣
Therefore, p = 24 (number of features in one data sample)
Here n = 72000 (See Table 4)

After calculating distance (d) as shown in Fig 15, K nearest
neighbours are identified. At the final stage, test data is
predicted with the same class as the most common labelled
class among K nearest neighbours.

2) SVM-SUPPORT VECTOR MACHINES
SVM works by creating a hyperplane to separate various
classes of the input data set [28]. It has many features to
deal with extensive data with overlapping and noise such as
creating hyperplane in higher dimensional space, ignoring
outliers, kernel tricks etc. This hyperplane is achieved with
the help of a decision function f (x) as follows:

f (x) = sign (g (x)) (19)

g (x) is derived with the help of input training vectors xi and
classes Y , where Y = (y1, y2, . . . yc) , y ∈ [−1, 1], c is the
number of labelled classes.

g (x) = (w.x)+ b (20)

w and b are selected such that hyperplane is created to clas-
sify testing data correctly by ensuring distance between the
hyperplane, and closest vectors is maximum, this constraint
is expressed as:

yi((w, xi)+ b)) ≥ 1− ξi{ξi ≥ 0, for all i} (21)

Maximizing the margin between two classes is solved as an
optimization problem:

8(w, ξ) = min

{(
1
2

)
‖w‖2 + C

n∑
i=1

ξi

}
(22)

C is a regularization parameter. Eqn. (22) is solved with the
help of Lagrange multipliers and is simplified by the dual
formulation of the problem. After applying computational
techniques and certain simplification, consequently g (x) is
expressed as:

g (x) =
N∑
i=1

αiyi〈x, xi〉 + b (23)

In (23), x is a test vector, N is the number of support
vectors, and α is Lagrange multiplier. Also, for large and
complex data, which is not easily linearly separable as is
the case discussed in this paper, kernel function K is used.
K can be of different types and is preselected with cross-
validation, as shown in Fig. 14. A thorough discussion about
SVM fundamentals and detailed derivation is available in the
literature [23], [32].

Above operations are performed with the help of SVM
library available in MATLAB. Inputs such as C , kernel
parameters values are required to calculate support vectors
and these are decided with the help of CV. The C parame-
ter adds penalty for each misclassified data point. Different
random values of C are validated with CV datasets and this
exercise is repeated formultiple times on various CVdatasets.
The model for which best accuracy is obtained, C value
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FIGURE 15. SAPF operation in Harmonic Compensation and resonance damping mode: (a) Block diagram of detailed SAPF circuit,
(b) Reference current generation technique for harmonic compensation, (c) Reference current for resonance damping, (d) Harmonic
extraction (HE) from PCC voltages.

corresponding to that model is selected for testing. This pro-
cess is also called randomized search with cross validation
score. C = 100 is selected for accuracy of 98.5 %. For
kernel, cubic function is selected after evaluating multiple
kernel function. Table 5 shows accuracy corresponding to
different kernel functions in SVM against test data. Optimal
hyperplane (23) is defined with the help of support vector,
and test data samples are classified accordingly. Performance
of the trained model is evaluated with the help of accuracy of
the predicted class.

IV. CONTROL STRATEGY FOR SAPF OPERATION
Control strategy for SAPF to address to perform both
harmonic compensation as well as resonance damping is
discussed in this section. Complete operation of SAPF in
presented in detail in Fig.15. As shown in Fig. 15(a), reso-
nance detection takes place with by sensing voltage at PCC
explained in earlier section. With the help of resonance fre-
quency, reference current for damping is generated as shown

in Fig. 15(b) which adds up in the reference current gen-
erated for harmonic compensation as shown in Fig. 15(c).
Here, Reference current generation technique (RCGT) for
harmonic compensation only senses load current and PCC
voltages sensors as shown in Fig. 15 (c). DC voltage is
estimated in order to reduce sensor required for sensing actual
DC voltage in power flow control. DC voltage is estimated
with the help of MRAS technique discussed in detail in [33].
The technique utilized for Harmonic extraction is shown in
Fig. 15(d). Detailed procedure is expressed as follows:

A. REFERENCE CURRENT GENERATION TECHNIQUE
RCGT is developed with the help of Adaline based LMS
algorithm. Also, detailed control strategy is provided in ref-
erence [30], [33], [34]

LMS algorithm works by calculating weights (w) such that
mean square error between desired and actual quantity is
minimum. Corresponding weight update equation for each
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phase at k th instant is expressed as:

wx (k + 1) = wx (k)

+ η {iLx (k)− wx (k) ux(k)} ux , xεa, b, c

(24)

where η(0 < η < 1) is converging coefficient. ux are unit
vector voltages calculated by expressing voltage at the PCC
in per unit. Weights are calculated for each phase separately
and equivalent weight (we) is calculated by taking average of
three weights as shown in Fig. 15(b). Reference current (i∗Sx)
is calculated as follows;

i∗Sx = (we + wLI ) ∗ ux (25)

wLI is loss component of current obtained from DC voltage
controller utilized to maintain DC voltage constant at refer-
ence value, i.e., U∗DC (700 V).

Ue (k) = U∗DC (k)− UDCest (k) (26)

wdc (k + 1) = wdc (k)+ kid ∗ {Ue (k + 1)− Ue (k)}

+ kpd ∗ Ue (k + 1) (27)

where, Ue is error between actual and reference DC voltage
U∗DC . kpd and kid are proportional and integral gains of the
PI controller. Reference harmonic compensation current, i∗hx
is generated by subtracting actual load current iLx from sinu-
soidal reference current i∗Sx as shown in Fig. 15(c).

B. RESONANCE DAMPING TECHNIQUE
According to detected resonance frequency range (F range),
corresponding harmonic component (uh) and fundamental
component (u1) of PCC voltage is extracted as shown in
Fig.15(b). With the help of extracted components IHD (Indi-
vidual Harmonic Distortion) with respect to harmonic order
around resonance frequency (h) is calculated as:

IHDh =
Uh
U1

(28)

where, Uh and U1 represents RMS value of harmonic order
′h′ and fundamental component of PCC voltage respectively.
IHD∗h is 3%, standard limit for individual harmonic distor-
tion for voltages according to IEEE standard 519 [35]. The
difference between standard and obtained IHD is sent to
PI controller in order to regulate actual distortion limits.
Thus, reference current for damping resonance is obtained as
follows:

i∗r =
(
IHD∗h − IHDh

) (
kp + ki

/
s
)
∗ uh (29)

Here, it is to be noted that, here only one harmonic order is
taken into account. According to predicted frequency range,
multiple harmonic orders within frequency range can be taken
and reference current is calculated for each order in similar
manner. Total reference current for damping is expressed as:

i∗r =
∑
h

i∗rh (30)

Thus, reference current in (30) includes all harmonic orders
within resonance frequency range. Similarly, for multiple
resonance cases, all such reference components for different
harmonic order can be added together to obtain total reference
current. Here, extracting total harmonic component of volt-
age (upcc) is avoided as tracking high order damping reference
current is difficult considering fixed switching frequency.

1) HARMONIC EXTRACTION (HE)
Three phase PCC voltages are transformed into d−q coordi-
nates with the help of unit vector generated with the help of
PLL. In order to extract particular order harmonic (h), rotating
frequency of unit vectors is set accordingly i.e., ′h′ times of
the line frequency. DC component is extracted from trans-
formed vectors with the help of LPF of cut off frequency 1Hz.
Using inverse transformation, extracted component in d − q
frame is transformed into three phase positive sequence com-
ponent. Corresponding negative sequence component can be
obtained in a similar way by using unit vector rotating in
opposite direction as shown in Fig.15(d).

2) HARMONIC COMPENSATION AND RESONANCE
DAMPING REFERENCE CURRENT GENERATION
Total reference current is obtained by adding both reference
harmonic current i∗h as shown in Fig. 15(b) and reference
damping current i∗r as shown in Fig.15(c).

i∗Fx = i∗hx + i
∗
rxxεa, b, c (31)

Reference filter current and actual filter current are sent
to PWM current controller to generate pulses for VSC as
shown in Fig. 15(a). Here, in place of actual filter current,
estimated filter current is utilised to reduce the number of
current sensors. Filter current is calculated with the help of
switching states and inverter output voltages.

iFestx =
1
Lf

{∫ (
upccx − uxn−est

)}
xεa, b, c (32)

where, vxn−est is inverter output voltage, van−est

uan−est =
[
U∗DC (k)− Ue(k)

]
∗

[
2
3
Sa −

1
3
Sb −

1
3
Sc

]
(33)

where, Ue is error between U∗DC and UDCest . Similarly,
uan and ubn can also be estimated. Detailed derivation is
provided in [33].

V. RESULTS AND DISCUSSION
Performance of SAPF is evaluated in three modes. Mode I:
Resonance detection, Mode II: Harmonic compensation,
Mode III: Harmonic compensation and Resonance damping.

A. MODE I: RESONANCE DETECTION
For resonance detection, the number of datasets produced
for both training and testing is shown in Table 4. As shown
in Table 4, out of 144000 datasets, there are 61 % cases
with resonance within 0-2.5 kHz and 38 % cases without
resonance. Each dataset includes a set of voltage harmonic
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FIGURE 16. Confusion Matrices: (a) Confusion matrix for trained model by SVM, (b) Confusion matrix for trained model by KNN,
(c) Confusion matrix for test data prediction by SVM, (d) Confusion matrix for test data prediction by KNN.

spectra in the range of 0-2.5 kHz. Training and testing data are
generated by considering different values of load parameters
and the number of households. Now, to label each dataset,
the following points are selected. (1). Cases without any
resonance: Such datasets include cases without any reso-
nance within 0-2.5 kHz or amplification factor less than 1.
Such datasets are labelled as ‘‘No Resonance.’’ (2). Cases
with resonance: Such datasets include cases with resonance
frequency within 0-2.5 kHz. On the basis of the peak in
the impedance, i.e., at resonance frequency, amplification of
harmonics is generally spread around 200-300 Hz range (see
Fig.5). Thus, taking into account bandwidth of the resonance,
datasets are labelled in terms of the frequency range. e.g.,
dataset belonging to 1650 Hz resonance frequency, is labelled
as ‘‘1500-1750 Hz’’ frequency range.

1) PERFORMANCE OF CLASSIFICATION LEARNING
ALGORITHM FOR TRAINING DATA
Training data consists of the data labelled with respect to the
class it is associated with. Now, data is trained by SVM and

KNN algorithm with respect to the corresponding labelled
class. At the training stage, algorithms learn from the labels
provided as an input to algorithm and then performs the
classification as discussed earlier.

The performance of both classifiers SVM and KNN is
measured with the help of the Confusion Matrix. Confusion
matrix shows actual classes along columns and corresponding
predicted classes along rows as shown in Fig. 16. Confusion
matrix effectively showcases the performance of the model
in detail. In addition to overall accuracy of the trained model,
confusion matrix also shows prediction accuracy with respect
to each class (different frequency ranges).

Overall accuracy of the ML model is defined as total num-
ber correctly predicted cases out of all cases. For individual
cases, performance parameters like precision and recall can
easily be calculated for each class with the help of confusion
matrix. Precision is defined as the number of correctly pre-
dicted cases of class A out of all predicted cases in class A.
Similarly, recall is total number of correctly predicted cases
of class A out of actual number of cases in class A, where
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A represents each class shown in confusion matrix. For
example, precision and recall for class ‘‘300-550 Hz’’ from
confusion matrix shown in Fig. 16(a) is calculated as follows:

Precision =
{

5230
56+ 5230+ 59

}
∗ 100 = 97.84 (34)

Recall =
{

5230
5230+ 74

}
∗ 100 = 98.604 (35)

Accuracy of the trained model by SVM and KNN
is 98.55% and 86.78 % respectively, as shown in
Fig. 16 (a) and (b). Considering the case of 100-350 Hz range
in confusion matrix shown in Fig.16 (a), 12.7 % of datasets
with actual resonance frequency range in 100-350 Hz is
falling in 300-550 Hz range, which is true for some instances,
as there is 50 Hz overlap and cases with resonance frequency
between 300-350 Hz can be classified as in both categories.
Similarly, for KNN, 48.9 % of datasets with actual resonance
frequency in 100-350 Hz is falling in 300-550 Hz range as
shown in Fig. 16(b). It is to be noted here that classification
of cases without resonance is attainedwith 100% accuracy by
both KNN and SVM as shown in Fig. 16 (a) and (b). It can be
observed from confusionmatrix in Fig. 16 (a-b) that, accuracy
for the datasets in higher resonance frequency range is greater
than in lower frequency range, which shows that most cases
with higher resonance frequency also have relatively higher
amplification factor.

Due to the considerable difference in the trained model’s
accuracy by both KNN and SVM algorithms, a trade-off
between computation time and accuracy is made according to
the requirements. Table 5 shows corresponding computation
time and accuracy of both SVM and KNN algorithms. The
SVM algorithm performs better in terms of accuracy than
KNNwith more than 90% accuracy, i.e., 98.55 % and 95.6 %
with cubic and Gaussian kernel function, respectively. KNN
algorithm with the Cosine distance metric consumes less
training time, i.e., 99 secs, which is much lesser than SVM.
Therefore, considering the slow speed of SVM, KNN with
86.78 % accuracy and fast speed is preferred for training.

2) PERFORMANCE OF CLASSIFICATION LEARNING
ALGORITHM FOR UNSEEN TEST DATA
Performance of trained model obtained by SVMCubic (max-
imum accuracy) and Cosine KNN (minimum training time)
is observed by subjecting it with the unseen test data. The
trained model with 98.55 % (Fig. 16 (a)) accuracy is tested
against new unseen data and predicted class is shown with
the confusion matrix in Fig. 16(c). As shown in Fig. 16(c),
the prediction accuracy obtained from SVM is 84.1%.

It can be observed from Fig. 16(c) that prediction accuracy
for cases without resonance, and for cases with higher reso-
nance frequency is 100 % and∼90 % respectively. Similarly,
the accuracy of the trained model by KNN, when subjected to
test data is 78.67%, as shown in Fig. 19. Here, the accuracy of
predicted class for ‘‘No resonance’’ cases is 99.3%, with only
0.7 % falling into ‘‘500-750 Hz’’ and ‘‘700-950 Hz’’ class.

TABLE 5. Accuracy and computation time.

From the confusion matrix shown in Fig.16(c) and (d),
it can be found that there is an overlap of 50 Hz in various
classes (resonance frequency ranges). Due to this most of
the false prediction falls into the nearest range of resonance
class. E.g., out of 624 datasets (240+292+92) belonging to
‘‘100-350 Hz’’ class in confusion matrix shown in Fig.16(d),
38.5 % of datasets show true prediction while 61.5
(46.8+14.7) % of datasets show false prediction identified
as ‘‘300-550 Hz’’ and ‘‘No Resonance,’’ respectively. Here,
cases with resonance frequency in ‘‘300-350 Hz’’ range will
fall in both ‘‘100-350 Hz’’ and ‘‘300-350 Hz’’ class.

B. PERFORMANCE OF SAPF FOR COMPENSATING
HARMONICS AND RESONANCE DAMPING
Performance of SAPF under two different resonance cases is
shown in Fig. 17 in terms of PCC voltage, source current,
compensating current and FFT analysis. In Fig 17(a), SAPF
is connected at t = 0.05 sec improving waveforms of PCC
voltages and source current from distortedwaveforms to sinu-
soidal. At this instant (t = 0.05-0.08), SAPF only operates
in Mode II (Harmonic compensation), thus harmonics ampli-
fied due to resonance still appears in both PCC voltage and
source current waveform. At t = 0.08, SAPF starts operating
in Mode III, thus adding resonance damping component in
compensating current which improves THD of both PCC
voltage and source current from 14.6% to 3.52% and 24.06%
to 3.12% respectively as shown in Fig. 17(b). Similarly for
case 3, harmonics are considerably reducedwhen SAPF oper-
ates in Mode III at t = 0.08 sec in comparison to Mode II
improving THD of PCC voltage and source current from
14.3% to 3.33 % and 37 % to 4.87% respectively as shown in
Fig. 17(d). Corresponding FFT analysis is shown in Fig. this
and this. Also, IHD of 31st and 10th harmonic in PCC voltage
for case 2 and 3 improved from 5% to 1.9 % and 12.2 % to
2.2 % respectively after resonance damping.
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FIGURE 17. Performance of SAPF under different operating modes in terms of PCC voltages (upcc ), Source currents (iS ), Filter currents (iF ):
(a) Case 2: Resonance at around 1550 Hz, (b) FFT analysis, (c) Case 3: Resonance at around 500 Hz, (d) FFT Analysis.

Also, estimated quantities i.e., filter current andDCvoltage
are shown in Fig. 18. These estimated quantities are utilised
in control algorithm to reduce the requirement of actual
sensors.

C. PERFORMANCE OF PROPOSED TECHNIQUE IN
PRESENCE OF NOISE
Performance of SAPF is tested in presence of noise in both
voltage and current measurement. Effect of noise is analysed
at two stages of the proposed work stated as follows:

1) EFFECT OF NOISE ON PERFORMANCE OF ML MODEL
FOR HARMONIC RESONANCE DETECTION
Resonance detection only requires voltage harmonic data as
an input. Therefore, noise is added in voltage harmonic data
to evaluate performance of the trained model. An example
showing difference between harmonic profile of voltage with
and without noise is shown with the help of FFT analysis in
Fig. 19. Presence of noise can be observed from increased
voltage harmonic levels around 1500 Hz shown in Fig 19 (b).
Now, previously trained SVM model shown in Fig. 16(a)
is utilized for testing i.e., ML model is trained with the
samples that do not contain noise. It is to be noted that a
pre-trained ML model is used for testing, thus prediction of
resonance does not take additional time in the control unit.
From unseen test data, noise is added in 25 % of test datasets
i.e., from total of 72000 samples (Table 4), noise is added
in 18000 samples.

Performance of trained model obtained by SVM is
observed by subjecting it with unseen test data contain-
ing noise. Predicted class is shown with help of confusion
matrix in Fig.20. The prediction accuracy obtained from
SVM trained model is 80.24 % as shown in Fig.20. It can be
observed from Fig. 20 that prediction accuracy for cases with-
out resonance, and for cases with higher resonance frequency
is 99.4% and∼85-90% respectively. This is due to highmag-
nification ratio at higher frequency ranges. Accuracy of ML
model reduced by 4 % after adding noise. This reduction in

FIGURE 18. Actual and estimated quantities: Filter current (iF ) and DC
voltage (UDC ) from top to bottom respectively.

FIGURE 19. FFT Analysis of PCC voltages (phase a): (a) Without noise,
(b) with noise.

accuracy is mainly due to misclassification around lower fre-
quency range (100-1000 Hz). Performance of trained model
is tested under worst condition since noise is only added
during the test stage. Performance of trained model can be
improved if presence of noise is also considered at the training
stage.
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FIGURE 20. Confusion matrix showing performance of SVM trained
model for test data containing noise.

FIGURE 21. FFT Analysis of load current (phase a): (a) Without noise,
(b) with noise.

FIGURE 22. Performance of SAPF in presence of noise in load current
measurement.

2) EFFECT OF NOISE ON RESONANCE DAMPING AND
HARMONIC COMPENSATION
Combined control strategy requires information from PCC
voltage and load current sensor. Here, SAPF is operating in
Mode III under case 2 condition i.e., SAPF is performing

FIGURE 23. Performance of SAPF in presence of noise in PCC voltage
measurement.

FIGURE 24. FFT Analysis of voltage at PCC and load current (phase a) in
presence of:- (a) noise in load current measurement, (b) noise in PCC
voltage measurement.

both harmonic compensation and resonance damping and
resonance at around 1550 Hz is considered for evaluation.
It can be observed from Fig.21 that THD of load current
increased from 25.49 % to 29.38 % on adding noise. From
t = 0.12 to 0.2 sec, white noise is added in phase a sensor
of load current and from t = 0.16 to 0.2 sec, noise is added
in all three phase sensors of load current as shown in Fig.22.
The presence of noise resulted in an increase in THD of iS
from 3.12 % to 3.65 % during t = 0.12 to 0.2 sec. Similarly,
for PCC voltage sensors, white noise is added in phase ‘a’
sensor of PCC voltage from t = 0.12 to 0.2 sec and in all
three phases from t = 0.16 to 0.2 sec as shown in Fig. 23.
This voltage is shown with ‘‘Measuredupcc’’ i.e., measured
PCC voltage which is involved in the reference current gen-
eration technique. From the source current waveform shown
in Fig. 23, it can be observed that performance of SAPF
is not significantly affected in presence of noise in PCC
voltage sensor. THD of source current only increased from
3.12 % to 3.16 %. This is because unit voltage generation
remained unaffected in presence of disturbance in voltage
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sensors as shown by uS waveform in Fig. 23. Corresponding
FFT analysis of PCC voltage and source current in pres-
ence of load current and voltage sensor noise is shown in
Fig. 24 (a) and (b) respectively.

VI. CONCLUSION
This paper proposes a new technique to detect resonance in
power distribution system. This technique is based on the
machine learning based classification approach, which uti-
lizes both KNN as well as SVM algorithm. Machine learning
approach solves the problem of external signal injection,
complex algorithms and additional circuitry which is usu-
ally required to detect harmonic resonance. This paper also
provides an insight into various possible cases of resonance
caused due to different parameters in the distribution network
consisting of both SAPF and a PFC capacitor bank. A realistic
database resembling the behaviour of the actual resonance
cases in power distribution network is created such that it con-
sists of a variety of resonance scenarios with different charac-
teristics, e.g., resonance frequency, amplification factor and
bandwidth. Resonance frequency within 2.5 kHz is detected
while considering the bandwidth of 250 Hz. Accuracy of 84%
from SVM and 78 % from KNN is obtained for classifying
the test data.

This paper deals with the classification and detection of
resonance in terms of different frequency ranges. Further
research will focus on resonance identification in terms of
amplification factor through machine learning. In addition
to this, further testing with real field measurement data is
required to assess the accuracy of the machine learning-
based detection approach in detecting/classifying practical
resonance scenarios.

In addition to resonance detection, resonance damping and
harmonic compensation are achieved by utilising only two
sensors thus reducing the overall requirement of dedicated
sensors.
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